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1.3.2 Solution through characteristic curves 

To find the general solution of Lagrange’s equation (1.4) through the curve , we define the 

characteristic curves 
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                                                                  Here, we need to find the relationship 

between 1c   and 2c in the general solution ( 0),( 21 ccF ). 

Example: Find the solution of the equation  
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Example: Find the solution of the equation  
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Now, we can write the curves by using t as 
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Example: Find the solution of the equation  
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Now, we can write the curves by using t as 
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From (*) and (**), we have 
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1.3.3 Existence and uniqueness of solution 

In this section we need to present the conditions which are used to show that whether there 

may not exist solution, there may exist solution, or there exist infinitely may distinct 

solutions. In other words, either there is no existence of solution or no uniqueness. 

Consider the first-order PDE 
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Here, we want to find the solution of equation (1.9) through the curve which is defined by 
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Then, from equations (1.9) and (1.10), we have the following system 
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 Then, the system (1.11) has a unique solution. 
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   Then, there may not exist a solution. 

 


